Divisor 2557

Prime Number:
Yes!
Divisibility test:
The "Satan's Burgers Test"
Test Discovered by:
Matt Parker
Date:
11/11/2024

The "Satan's Burgers Test" for Divisibility by 2557

To determine if any number is divisible by 2557, apply the "Satan's Burgers Test":

  1. If your number ("X") has 7 digits or more, separate the last (smallest) 6 digits from the rest. This makes two smaller numbers, call them Left and Right (note: don't add in trailing zeros to L). If there are fewer than 7 digits, L = 0 and therefore R = X.
  2. Multiply L by 213 and add to R.
  3. Take that result and cross off its final digit (units). Take this new number and subtract 767 times the digit you just crossed off. Call this final result "Y".
  4. Y will be much smaller than X, but we have preserved divisibility by 2557. That is, your original number is divisible by 2557 if (and only if) Y is. Now that it's much smaller, with basic knowledge of your 2557-times tables, it should be easy to visually see if Y is divisible by 2557. If the Y is still much larger than 2557, the above process can be repeated until it does reduce to within small multiples of 2557.

Easy!