Divisor 10601

Prime Number:
Yes!
Divisibility test:
The "Michael Vacha Test"
Test Discovered by:
Matt Parker
Date:
11/11/2024

The "Michael Vacha Test" for Divisibility by 10601

To determine if any number is divisible by 10601, apply the "Michael Vacha Test":

  1. If your number ("X") has 9 digits or more, separate the last (smallest) 8 digits from the rest. This makes two smaller numbers, call them Left and Right (note: don't add in trailing zeros to L). If there are fewer than 9 digits, L = 0 and therefore R = X.
  2. Multiply L by 767 and add to R.
  3. Take that result and cross off its final digit (units). Take this new number and subtract 1060 times the digit you just crossed off. Call this final result "Y".
  4. Y will be much smaller than X, but we have preserved divisibility by 10601. That is, your original number is divisible by 10601 if (and only if) Y is. Now that it's much smaller, with basic knowledge of your 10601-times tables, it should be easy to visually see if Y is divisible by 10601. If the Y is still much larger than 10601, the above process can be repeated until it does reduce to within small multiples of 10601.

Easy!